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Objective: In order to encourage the inclusion of bladder and bowel outcomemeasures in preclinical spinal cord
injury (SCI) research, this paper identifies and categorizes 1) fundamental, 2) recommended, 3) supplemental
and 4) exploratory sets of outcome measures for pre-clinical assessment of bladder and bowel function with
broad applicability to animal models of SCI.
Methods: Drawing upon the collective research experience of autonomic physiologists and informed in
consultation with clinical experts, a critical assessment of currently available bladder and bowel outcome
measures (histological, biochemical, in vivo functional, ex vivo physiological and electrophysiological tests)
was made to identify the strengths, deficiencies and ease of inclusion for future studies of experimental SCI.
Results: Based upon pre-established criteria generated by the Neurogenic Bladder and Bowel Working Group
that included history of use in experimental settings, citations in the literature by multiple independent groups,
ease of general use, reproducibility and sensitivity to change, three fundamental measures each for bladder and
bowel assessments were identified. Briefly defined, these assessments centered upon tissue morphology,
voiding efficiency/volume and smooth muscle-mediated pressure studies. Additional assessment measures
were categorized as recommended, supplemental or exploratory based upon the balance between technical
requirements and potential mechanistic insights to be gained by the study.
Conclusion: Several fundamental assessments share reasonable levels of technical and material investment,
including some that could assess bladder and bowel function non-invasively and simultaneously. Such
measures used more inclusively across SCI studies would advance progress in this high priority area. When
complemented with a few additional investigator-selected study-relevant supplemental measures, they are
highly recommended for research programs investigating the efficacy of therapeutic interventions in
preclinical animal models of SCI that have a bladder and/or bowel focus.

Keywords: Spinal cord injury, Animal models, Outcome measures, Functional assessment, Bowel, Colon, Bladder, Preclinical studies

Introduction
It is axiomatic that spinal cord injury (SCI) inflicts con-
siderable impact upon all aspects of the life of an indi-
vidual. Unlike the effects of SCI upon locomotion,
profound alterations in autonomic physiology such as

bladder and bowel function have not received a pro-
portional level of scientific urgency.1 Dysfunction of
the somatic and autonomic circuits necessary for suc-
cessfully evacuating the bladder or bowel, as well as
the maintenance of continence until such time as eva-
cuation is desirable, comprises one of the most prevalent
and clinically recognized comorbidities of SCI.2 These
comorbidities, clinically referred to as neurogenic
bladder and bowel, affect upwards of 60% of the SCI
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population and a similar percentage of individuals rank
neurogenic bladder and bowel (NBB) as a source of
major distress.
In March 2017, the Craig H. Neilsen Foundation

hosted a workshop with a focus on bladder and bowel
dysfunction,1 as it was and still is a top consumer and
research priority.3–5 This discussion highlighted the
need to identify existing methodologies and measures
that could be adopted by laboratories studying animal
models of SCI to enhance research in this area and
establish the effect of experimental therapeutic strategies
on bladder and bowel function.
Anatomical and physiological considerations of the

bladder and bowel:
Storage and emptying are common elements affected

in SCI individuals with neurogenic bladder and bowel. It
is well established that anatomical connections to the
smooth muscle of the bladder wall and internal urethral
sphincter stem from lumbar sympathetics as well as
sacral parasympathetics while a somatic supply from
the pudendal nerve supplies the external urethral sphinc-
ter. Continence and voiding are dependent on both
spinal reflex components that include this efferent
supply and primary afferents and spinal interneurons,
as well as supra-spinal circuitries (including regions
such as cerebral cortex, the periaqueductal gray and
pontine micturition center) that modulates it (reviewed
by6). Interruption of the spinal-bulbo-spinal reflex
loop and higher order voluntary control systems follow-
ing spinal cord injury leads acutely to an areflexic
bladder and urinary retention followed chronically by
bladder overactivity and inefficient reflex micturition
resulting from a loss of coordination between the
bladder and its outlet (i.e. detrusor-sphincter dyssyner-
gia). In contrast, colonic physiology and function
serves complex integrated processes that differ from
the bladder. For example, regional specialization pro-
motes mixing, fluid and electrolyte absorption, and bac-
terial fermentation within the proximal regions followed
by storage and propulsion within more distal regions
(see7). While colonic anatomy and function is special-
ized to meet the dietary needs of every organism, the
basic neurophysiology of storing and propelling feces
remains essentially similar. In health, local enteric
motor circuits generate reflexive phasic contractions to
promote mixing and slow net distal propulsion of
luminal contents. Commonly, SCI provokes prolonged
transit times that translate into the excessive reabsorp-
tion of water. Giant migrating contractions are large
amplitude contractions that occlude the lumen, and pro-
pagate without interruption over relatively long dis-
tances to produce mass movements; diminished

propulsive contractions are associated with evacuation
difficulties.
The need for bladder and bowel measurement rec-

ommendations for use in preclinical animal research
studies comes in part from a shift in the SCI field to
include outcome measures that go beyond common
tests of motor systems. For example, the Basso-
Beattie-Bresnahan (BBB) locomotor rating scale8 has
strong validity and is used in many studies that test a
therapeutic intervention, but it only assesses motor
recovery in rats. An array of functional, histological,
biochemical, physiological, electrophysiological and
imaging techniques and procedures have been used in
preclinical studies specifically designed to assess lower
urinary tract (LUT) and bowel dysfunction after acute
and/or chronic SCI in multiple species (both small
animal and large animal models of SCI). Broadly appli-
cable measures are needed to stimulate research in
bladder and bowel function after SCI and while there
are many evident trends, no consensus exists on
minimum standards.
Recognizing that investigators range from those who

use rodents for preclinical efficacy studies to those who
seek to directly understand or address the mechanisms
of bladder and bowel dysfunction and discover thera-
peutic targets, the goal of this article is to provide gui-
dance for selection of bladder and bowel measures
applicable as either primary or ancillary outcomes.
Furthermore, this article provides recommendations
concerning the appropriate tools for preclinical assess-
ment of functional recovery. SCI researchers who are
new to the areas of bladder and/or bowel function are
encouraged to start with two recent introductory
reviews.6,9

Methods
A survey of the published SCI literature to identify LUT
and bowel outcome measures was done using criteria
adapted from a 2006 NIDRR SCI measures working
group regarding clinically relevant functional recovery
assessment tools in general.10 Drawing upon the collec-
tive research experience of autonomic physiologists, a
critical assessment of bladder and bowel outcome
measures was made in order to identify the strengths,
deficiencies and ease of inclusion for future studies of
experimental SCI. History of prior use in preclinical
physiological research was required for inclusion.
Additional emphasis was given if use in SCI research
was evident. The current review primarily targeted
methods used over the past 15 years, with inclusion of
some standard procedures pre-dating that time. Usage
by multiple research groups was given heavy
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consideration for inclusion (although for practical
reasons, not all groups could be cited), as was exper-
imentation with multiple species of animals. General
guidelines for selection of recommendation categories
were developed by a sub-group of participants from
the March 2017 Craig H. Neilsen Foundation
Workshop on bladder and bowel dysfunction after
SCI (listed in Appendix 1 of1). Preclinical outcome
measure selection categories for use in SCI studies
included ease of use, affordability, time and effort
requirements, reliability/reproducibility and bias based
on usage, and prior demonstration of sensitivity to
change with an intervention (significant differences
with P < 0.05). Five preclinical recommendation cat-
egories were created (Table 1). The recommendations

are further subdivided based upon whether the
primary focus of the preclinical SCI study targets recov-
ery of LUT and/or bowel function versus recommen-
dation as a standard measure(s) where the intervention
target is not specific to bladder or bowel management.
Additional qualitative criteria were based upon the fol-
lowing properties for each measure:
1. The widespread availability and utilization of a tech-

nique by independent investigators that did not directly
descend from one common laboratory or mentor.

2. Validity based upon available data utilizing appropri-
ate controls.

3. Sensitivity of a measure to detect changes in acute and
chronic pathophysiological models not necessarily
including SCI.

4. Preclinical measures that are functionally similar to
clinical techniques are identified as such, in contrast
to those that are specific to animal models and
provide more mechanistic advantages.

Finally, assessment techniques were categorized as 1)
histological; 2) biochemical; 3) functional; 4) physiologi-
cal; and 5) electrophysiological tests.

Results
Each category provides selected examples in order to
provide readers with basic familiarity of the assessment
strategy.
Lower Urinary Tract (LUT) and Colon (Bowel)

Physiology:
The search for studies using methods that assess

LUT function in preclinical SCI models indicates an
array of techniques and procedures that range from
simple collection of urine volume voided to complex
recordings of dissociated dorsal root ganglion
(DRG) bladder neurons. The results provided in
Table 2 reference a small sampling of studies from
an array of independent international laboratories
that have published SCI studies in recent years con-
taining some aspect of LUT function as an outcome
measure.
The number of studies using methods that assess

colonic function in preclinical SCI models is consider-
ably smaller. However, the field of neurogastroenterol-
ogy reflects an abundant number of techniques and
procedures that range from measuring fecal output to
intracellular recordings of smooth muscle cells and
specific populations of autonomic neurons. The results
provided in Table 3 reference a number of studies from
independent international laboratories that have estab-
lished techniques outside of SCI studies that are appli-
cable for the understanding of colon function as an
outcome measure.

Table 1. Summarized category recommendations for pre-
clinical assessments.

Recommendation
Level Definition Advantages

Fundamental An assessment
that collects
essential and
highly relevant
information
applicable to any
study related to
NBB.

Demonstrate
sensitivity to change
Easily incorporated
Minimal capital
investment

Recommended An assessment
which is essential
based on certain
conditions or study
types in research.

Reasonably
incorporated by
laboratory or through
a core facility
Provides a fairly high
yield of data for
minimal effort
Moderate capital
investment

Supplemental An assessment
which is essential
based on certain
conditions or study
types in similar
area of research.

Reasonably
incorporated by
laboratory, through
collaborations or a
core facility. Provides
a fairly high yield of
mechanistic insight
Entails greater
training, effort and
capital investment.

Exploratory An assessment
that shows promise
but is highly novel.

Requires further
validation, but may fill
current gaps in
knowledge.
Requires further
development and
validation
Potential to evolve
into a recommended
tool.

Not Recommended An assessment
that is largely
unsuitable for use
by most
laboratories.

Requires high level of
monetary investment
or training
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Tissue morphological assessments
There are many studies that harvest specific tissues at the
completion of the experiments to determine effects of
injury processes or interventions. Bladder harvesting is
more prevalent than colon yet both provide useful
data beginning simply with weight. Weight differences
can reflect pathophysiological changes in tissue

composition such as thickening or loss of tissue integrity
and is an easily generated outcome measure that should
be considered a fundamental element in any study
addressing neurogenic bladder or bowel. Both the
bladder76,138,139 and the colon7,140 demonstrate post-
SCI alterations in smooth muscle wall thickness and col-
lagen deposition. Collection of the bladder and colon at

Table 2. Summarized assessment recommendations for pre-clinical studies of lower urinary tract function after SCI.

Measure Examples of Outcomes
Technique

Classification

Evaluation
Recommendation for

SCI Studies

Reference Examples
LUT

emphasis
Other

emphasis

Tissue Morphology Hematoxylin and Eosin (H&E)
and Masson trichrome of

bladder wall; bladder weight;
bladder afferents; bladder

fibrosis

Histological Fdtl Sup 11–23

Ultrasound/Brain Imaging High resolution images for
volumetric calculations

Imaging Sup NRec 24–27

Tissue Biomarkers Immunoassay (ELISA) of bladder
tissue (e.g. NGF; cytokines); IHC

expression levels of various
neuromodulators in bladder
afferents (DRG; spinal dorsal

horn)

Biochemical Sup Sup 6,12,14,15,21,28–33

Immunohistochemistry
(IHC) of bladder wall

Neural marker density (PGP9.5;
NF200); staining of known
receptors/ion channels

Biochemical Sup Sup 17,23,30,33–35

RNA extraction and real-
time PCR

Total RNA of known targets from
the urinary bladder,

corresponding DRG and spinal
segments

Biochemical Sup Sup 20,30,34,36–40

Western blot analysis Total protein concentrations of
known targets in urinary bladder

and spinal cord tissues

Biochemical Sup Sup 14,20,30,34,41,42

Crede/Reflex Assessments Presence/absence of voiding;
Time to return of reflexive or
volitional emptying; volume

voided and post-void residual

Functional Fdtl Fdtl 12,28,29,34,41,43–50

Urinary Biomarkers Urine levels of growth factors,
cytokines and prostaglandins to
assess disease severity and/or

treatment response

Functional Sup/Ex Sup/Ex 13,14,41

Metabolic Cage Urine and drink frequency and
volume

Functional Rec Rec/Sup 15,51–56

Cystometry with or without
External Urethral Sphincter
EMG

Cystometrogram: resting and
peak pressure, bladder

contraction amplitude/duration/
area under the curve,

intercontraction interval, voiding
efficiency (VE = 100*(VV/

(VV + RV))); EUS EMG: latency,
duration, frequency, amplitude,
pattern (tonic/phasic), interburst

interval.

Functional Fdtl Rec/Sup 11,15–19,29,42,49,54,56–75

Isometric tension
recordings

Tone and contractility in bladder
smooth muscle strips

Physiological Sup NRec 30,76–81

Nerve/ganglion/CNS
Recordings

Properties of dissociated labeled
bladder afferent neurons; central

neuronal responses to
stimulation of the bladder

Electrophysiological Sup NRec 27,82–85

Fdtl: Fundamental; Rec: Recommended; Sup: Supplemental; Ex: Exploratory; NRec: Not recommended.
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the conclusion of an experiment also permits histologi-
cal analysis of cryosectioned or paraffin-embedded
samples using Hematoxylin and Eosin (H&E) stain to
better quantify wall thickness and tissue composition.
For more specific mechanistic studies, the assistance of
a trained pathologist permits the identification of basic
cell types including macrophages, monocytes, lympho-
cytes & neutrophils (e.g.7,86–89 in Table 3). To dis-
tinguish smooth muscle from collagen deposition, the
use of Masson’s trichrome stain or similar reagent is pre-
ferable.7,86 Due to the structural and functional differ-
ences in the proximal and distal colon, samples from
both regions are recommended.141,142

Immunohistochemical assessment of sampled tissues
permits the same focused assessments of cell and fiber
types and extracellular matrix components. For
example, density of the intrinsic motor innervation of
the colon by the enteric nervous system can be achieved
by immunostaining for the neuron-specific protein

HuC/D or pgp9.5.90,96,143 Reductions in enteric
neurons have been demonstrated in human archival
tissue140 as well as a rat model of SCI.7 While pan-neur-
onal markers (e.g. HuC/D, pgp9.5) are routinely used to
identify myenteric motor neurons and will provide accu-
rate neuronal density assessments, they fail to label the
specific neurochemical phenotypes of smooth muscle
innervation such as acetylcholine or nitric oxide.
Therefore, other specific antibodies are required
(see96), as cholinergic and nitrergic neurons are among
several neuronal phenotypes that are critical for gastro-
intestinal propulsion.88,91,144 Elegant studies mapping
the extrinsic innervation have also been performed for
the evaluation of efferent and afferent fibers within
bladder145–147 and gastrointestinal wall.148–151

Molecular/biochemical assessments
For discovery, mechanistic research and target engage-
ment studies, additional tools for analysis of harvested

Table 3. Summarized assessment recommendations for pre-clinical studies of bowel function after SCI.

Measure Examples of Outcomes
Technique

Classification

Evaluation
Recommendation for

SCI Studies

Reference
Examples

GI
emphasis

Other
emphasis

Tissue Morphology Hematoxylin and Eosin (H&E) and
Masson trichrome of colon wall; crypt

integrity; smooth muscle fibrosis.
Cecum to anal verge weight.

Histological Fdtl Rec 7,86–89

Immunohistochemistry (IHC)
of enteric nervous system

Enteric density of fibroblasts and
neurons (HuC/D; c-kit/Ano-1;
nNOS;ChAT); staining of known

receptors/ion channels

Histological Rec Sup 7,86,88,90,91

RNA extraction and real-
time PCR

Total RNA of known targets from the
colon, corresponding dorsal root and
nodose ganglia and spinal segments

Biochemical Sup Sup 7,92–95

Western blot analysis Total protein concentrations of known
targets from the colon, corresponding
dorsal root and nodose ganglia and

spinal segments

Biochemical Sup Sup 94,96

Metabolic Cage Fecal output Functional Fdtl Rec/Sup 93,97–99

Fecal analysis Water; protein; lipid; carbohydrate
(macronutrients)

Functional Rec Sup 100–103

Fecal analysis Microbiome Functional Sup Expl 104–108

Transit studies Whole gut transit of non-absorbable
marker

Functional Rec Sup 101–103,109

Motility studies Bead expulsion test from distal colon Functional Rec Sup 110–113

Pressure recordings Distal or proximal pressure
(preferably both)

Functional Fdtl Rec 7,114–116

Muscle tension recordings Tone and contractility in colon
smooth muscle (in vivo or ex vivo)

Physiological Rec NRec 98,99,103,117–125

Nerve/ganglion/CNS
recordings

Pudendal and/or parasympathetic
(pelvic) nerve activity or stimulation

Electrophysiological Sup NRec 126–129

Neuromuscular recordings Ex-vivo recording of smooth muscle
junction potentials and mucosal/

epithelial function

Electrophysiological Sup NRec 98,130–132

Enteric ganglion recordings Ex-vivo intracellular recording of
myenteric ganglion neurons

Electrophysiological Sup NRec 133–137

Fdtl: Fundamental; Rec: Recommended; Sup: Supplemental; Ex: Exploratory; NRec: Not recommended.
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tissue include the widely-employed evaluation of tissue
protein content and mRNA levels of various targeted
markers such as inflammation-associated molecules.
These may be quantified through RNA extraction, in
situ hybridization, or real-time PCR.7,11,41,92

Molecular and immunohistochemical techniques are
easily combined to cross-validate expression levels
with the cellular and sub-cellular localization within
target tissues that may be affected by optical limitations
to quantify immunopositive pixel densities.
A rapidly advancing and related field is the study of

bidirectional interaction between the gut microbiome
and the physiology of the entire organism. Intriguing
data on the importance of the gut microbiome in the
neurotrauma field is emerging,104,152 yet caution must
be exercised when considering the multifactorial deter-
minants of shifts in the microbiome composition.153

For example, microbiome dysbiosis drives systemic
endotoxemia and inflammation in a model of SCI154

as well as proposed reductions in microbiome-derived
metabolites.155,156 Both of these outcomes have pro-
found effects upon the nervous system.

Functional assessments
Functional assessments provide the most relevant
measures of neurogenic bladder and bowel and are con-
sidered essential for any studies designed to identify
mechanisms of autonomic dysfunction or effects of tar-
geted interventions on these systems. Measures are con-
sidered indirect if they reflect the relevant physiological
process (i.e. bladder and bowel storage and evacuation)
but are influenced by other, indirectly related, processes
(drinking and feeding volumes). Conversely, direct
measures of these same processes can be achieved by
filling or distending the bladder and colon with exper-
imentally-controlled volumes, pressures and rates of
stimulation. While these latter approaches can be per-
formed in consenting, unanesthetized humans, the
animal models may require an anesthetized subject.
One widely used procedure for small animal SCI

studies is the crede procedure (manual emptying of the
bladder). Although this is a necessary procedure done
throughout the SCI field for post-injury chronic care
until the emergence of reflex voiding, its use as an
outcome measure is frequently overlooked. The pro-
cedure, however, can easily provide quantitative data
in the form of the time to reflex void and volume of
urine released. Due to the potential for variability in
defining reflex voiding and the frequency of manual
intervention utilized across studies, careful attention to
the published literature is recommended (see43). Daily
residual volumes during the acute post-SCI phase of

recovery can be obtained and recorded easily, and
have been shown in a number of the studies cited (see
Table 2 Crede/Reflex assessments) to be a predictor of
long term recovery. The urine expressed is a further
potential source of information, as the use of urinary
biomarkers continues to expand for the detection and
surveillance of a variety of conditions and diseases.
Note that in large animals such as the
minipig,138,157,158 volumes and urine samples can also
be readily obtained, as a Foley catheter is kept in
place initially post-SCI either until reflex voiding
occurs or emptying continued with intermittent cathe-
terization (a common management strategy in human
SCI).
Metabolic cage usage for fluid intake and output

(equivalent to a voiding diary that is used clinically)
has been consistent over the years, although the technol-
ogy has become more sophisticated, leading to much
higher costs. The extensive use of metabolic cages has
offered a non-invasive means to simultaneously quantify
urine or fecal production93,97–99 and composition.159

One limitation of metabolic cages concerns their use
early following SCI when rats undergo the crede pro-
cedure (not problematic regarding fecal output). Note
that periodic rather than continuous use could limit
concern regarding the potential impact of single
housing on functional recovery.160,161

Oral administration of a non-absorbable marker (e.g.
charcoal, phenol-red; Table 3) permits a determination
of total gastrointestinal transit time, but this time is
likely to be influenced by cumulative delays in upper
gastrointestinal transit.117,162 Colonic passage of a rect-
ally-inserted bead, serving as a traceable fecal pellet, has
been employed in multiple research models.110–113 This
approach avoids upper gastrointestinal transit con-
founds and permits a distance calculation based upon
placement. There is a potential for experimenter-
induced confounds stemming from excessive stimulation
of the colon wall during insertion or colonic motor
activity driven by stress responses. Utilizing the same
principles as the clinical application of scintigraphy,
radiographic techniques have seen development for use
in animal models.163,164 These imaging techniques in
preclinical SCI models are less common, due to the
cost and availability of radiographic equipment.

Physiological assessments
In vivo assessments – The gold standard method used in
human urological studies and clinical evaluations, cysto-
metry, appears to be the most common technique used
in animal studies with a focus on LUT function.
Cystometry also appears in numerous SCI studies that
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use a battery of multi-system outcome measures (see
Table 2 citations). Cystometric outcome measures that
include void contraction amplitude and duration,
inter-contraction interval, pressure and voiding effi-
ciency as well as number and amplitude of non-void
contractions are done under either awake or anesthe-
tized conditions in species that include mice, rats,
rabbits, cats, dogs, sheep and pigs.
Manometric techniques are widely employed in

human colorectal evaluation and studies. Variations of
this technique are also quite common in the preclinical
literature (see Table 3). However, while the temporal res-
olution and the ability to record propulsive and retro-
pulsive contractions along numerous points in the
colon is possible with the multi-channel clinical
probes, only single channel transducer configurations
are commonly employed in preclinical applications.
Specifically, preclinical applications often use a rect-
ally-inserted fluid-filled balloon or flexible tube con-
nected to a pressure transducer.165–168 Although
balloon transducers are easy to use and incur low
initial costs, they have several disadvantages regarding
both the intrinsic compliance of the balloon wall (latex
or scilastic tubing is frequently used) and the large
“recording” surface area of the balloon (ca. ≥ 2.5 cm).
One alternative solution is the recent re-purposing of
miniaturized arterial pressure transducers7,116 that can
be employed in serial pairings due to a small diameter
(e.g. 3 French; ca., ≤ 1 mm).
Ex vivo assessments – Smooth muscle isometric

tension of the bladder or colon wall maintained in an
ex vivo organ bath preparation permits pharmacological
investigation of cholinergic117,118 as well as non-cholin-
ergic non-adrenergic (NANC) stimulation.169,170 Due to
the nature of terminal stage experimentation, any ex vivo
approach would be best suited to assess neuroplasticity
or sparing in studies of therapeutic interventions or
mechanistic studies therapeutic target development.

Electrophysiological assessments
Often, but not always, cystometry is accompanied by
external urethral sphincter EMG activity recording,
which provides quantitative information during the
filling and voiding phases, including the coordination
of detrusor-sphincter activity and quality of bursting
patterns during emptying (c.f., 29,65,69). A lack of coordi-
nation after SCI for example, referred to as detrusor
sphincter dyssynergia, results from tonic sphincter
activity which interrupts urine release and prolongs
voiding. EMG recording of the external anal sphincter
has also been employed.171–173 These methods require
some training and experience, but once established in

a laboratory, they can be used fairly simply as repetitive
or terminal outcome measures.
Additional electrophysiological techniques have been

routinely employed in research and are readily adapted
to neurogenic bladder and bowel studies. These
approaches, however, require a substantially higher
level of investment and training. Whole nerve recordings
of the autonomic and somatic innervation of the bladder
or distal gut, for example, provide quantitative evalu-
ation of segmental afferent and efferent reflex circuits
to the viscera (Tables 2 & 3). Intracellular recording in
smooth muscle cells for enteric nervous system-mediated
junction potentials yields insights to the enteric neurons
comprising the final common pathway of smooth
muscle contraction.98,130,131 Though less common,
studies have employed similar recording techniques for
the unique electrical activity of bladder smooth muscle
cells.174,175

Discussion
The results of this literature methods survey indicate the
existence of diverse types of bladder and bowel assess-
ment tools that have been employed in other fields of
research and are available for use as outcome measures
for studies of SCI, either with or without a primary
focus on visceral function.
Lower Urinary Tract (LUT) The most standard and

easy/cost-effective outcome measure of LUT function
is volume voided and post-void residual measures.
Residual volume collections and measurement is rec-
ommended at a minimum for all rodent SCI studies
during the crede procedure, a necessary standard operat-
ing procedure during the acute and sub-acute phases
post-injury. Note that the timing for the development
of reflexive voiding can vary depending upon severity/
completeness of the lesion. Urine measurement/collec-
tion beyond the development of reflex voiding would
include use of metabolic cages for small animals or
intermittent catheterization for large animals such as
the minipig.
Another simple procedure is the harvesting of the

bladder at the end of the study to obtain its weight.
Saving the bladder tissue for morphology assessments
is a recommended option for studies with a focus on
bladder but can also provide supplemental information
for other SCI studies as well. Further supplemental
information that can be obtained from bladder tissue
includes levels of certain proteins or mRNA.
Cystometry is considered fundamental for most SCI

studies with a focus on bladder dysfunction and is rec-
ommended for use as a supplement for all SCI studies
when bladder function is a question of interest or
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target of potential therapy. Although the preference is
for awake cystometry and inclusion of external urethral
sphincter EMG recording, it is not always practical.
Whichever approach is taken (sometimes based upon
skill set, timing and convenience), cystometry is rec-
ommended as part of a multidisciplinary approach
using a combination of different techniques. A few
examples of LUT studies investigating a therapeutic
intervention using multiple outcome measures including
cystometry14,15,30,34,40,41 illustrate the benefit of having
an array of different methods to demonstrate strong evi-
dence of a therapeutic effect.
Distal Colon Significant differences exist between the

functions and the neuromuscular control of the proxi-
mal versus the distal colon. The techniques that have
been described are applicable to the entire colon but
the distal colon offers greater ease of access due to the
inherent anatomy of the colon in quadrupedal animal
models (rodents, cats, dogs, pigs). For example, in
humans the transition from the distal colon to the
rectum begins at the distal terminus of the sigmoid
colon. The transition to the rectum is less readily visual-
ized in the rat and has been reported as variable lengths
(approximately 1–3 cm) relative to the anus.
Tissue harvest along the entire colon represents the

highest recommendation as an outcome measure for
the beginning stages of a research program on neuro-
genic bowel. The entire lumen of the gastrointestinal
tract undergoes a regular and rapid turnover of the epi-
thelial layer at a rate that surpasses any other tissue.
Histological assessment of intestinal morphology pro-
vides an index of changes in tissue health within a
narrow time frame. The easiest and most cost-effective
functional technique that is available for all SCI
studies is the transit rate of orally administered non-
absorbable dyes. However, pressure measurements of
colonic contractions offer greater validity for SCI
studies specifically focusing on bowel dysfunction.
With proper equipment to eliminate distress, animals
can be adapted to unanesthetized recording of distal
colon contractions. As with LUT functional studies,
an integrated panel of outcome measures will offer
stronger insights into deficits and detection of treatment
effects.
The trend in many recent SCI studies is inclusion of

multiple techniques for targeting one system or multiple
measures for many different systems. Although selection
of outcome measures is study-specific and dependent
upon the level and severity of SCI, there are standard
techniques in wide use that are easy to perform at a
low cost and not overly time-consuming that should
be common to all bladder/bowel-SCI or, ideally, SCI

studies in general. The shortfall in preclinical studies uti-
lizing assessments of bladder and bowel function limits
the development of a translational consensus in the
field. Adopting these recommendations will help refine
those animal models of neurogenic bladder and bowel
that reliably predict success in clinical testing.
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